A PROCEDURE FOR THE ULTRAVIOLET SPECTRAL DETECTION OF *ORTHO*-DIHYDROXYL GROUPS IN FLAVONOIDS

K. R. MARKHAM and T. J. MABRY

The Cell Research Institute and Department of Botany, The University of Texas at Austin, Texas

(Received 3 January 1968)

Abstract—A spectroscopic procedure using anhydrous AlCl₃ and AlCl₃/HCl is described for the detection of ortho-dihydroxyl groups in flavonoids. This method complements the sodium acetate-boric acid method which is commonly used for this purpose.^{1,2}

ALUMINIUM chloride in the presence of less than 0.008 N HCl has previously been used as a reagent for detecting ortho-dihydroxyl groups in anthocyanins.³ Furthermore, Harborne⁴ in 1954 suggested that AlCl₃ might be used for recognizing ortho-dihydroxyl groups in other flavonoids. Later, Jurd and Geissman⁵ established the pH requirements for the formation of AlCl₃/3',4'-ortho-dihydroxyl group complexes when they found that the presence of NaOAc was necessary for complex formation. The acidic conditions (i.e. the presence of acid or water) normally used for the detection with AlCl₃ of 3- or 5-hydroxyl groups in flavonols were found to prevent AlCl₃/ortho-dihydroxyl group complex formation.

Our current investigations, all of which are consistent with the previous observations, have clarified the different effects of anhydrous AlCl₃ and AlCl₃/HCl on the u.v. spectra of flavonoids (with the exception of anthocyanins) and have established that the comparison of the AlCl₃/HCl spectrum with the one obtained with anhydrous AlCl₃ alone permits the recognition of *ortho*-dihydroxyl groups in the B-ring of flavones, flavonols, chalcones and aurones as well as the detection of free 3- or 5-hydroxyl groups. Moreover, our data indicate that *ortho*-dihydroxyl groups in the A-ring, which do not involve the hydroxyl group hydrogen-bonded to the carbonyl function, can also be detected.

We first distinguished the different effects of AlCl₃ and AlCl₃/HCl in the course of the structure determination of a number of 5-desoxyflavones and 5-desoxyflavonols isolated from *Baptisia lecontei*.⁶ It was observed that the addition of a few drops of unacidified 5 per cent methanolic AlCl₃ to a methanol solution of 3',4',7-trihydroxyflavone 7-O-rhamnoglucoside (I, R=rhamnoglucosyl) caused a 40 nm bathochromic shift in the long wavelength peak; significantly, this shift was completely reversed on the addition of dilute aqueous

¹ L. Jurd, in *The Chemistry of Flavonoid Compounds* (edited by T. A. Geissman), pp. 108-154. Pergamon Press, Oxford (1962).

² T. J. Mabry, K. R. Markham and M. B. Thomas, *The Systematic Identification of Flavonoids*. Springer-Verlag, New York (1969).

³ T. A. GEISSMAN and L. JURD, Arch. Biochem. Biophys. 56, 259 (1955).

⁴ J. B. HARBORNE, Chem. and Ind. 1142 (1954).

⁵ L. Jurd and T. A. Geissman, J. Org. Chem. 21, 395 (1956).

⁶ K. R. MARKHAM and T. J. MABRY, Phytochem. In press.

⁷ L. HÖRHAMMER and R. HÄNSEL, Arch. Pharm. 285, 438 (1952).

FIG. 1. THREE SCHEMES ILLUSTRATING THE TYPES OF COMPLEXES^{5,7} THAT AICI₃ CAN FORM WITH FLAVONES AND FLAVONOLS IN THE PRESENCE OR ABSENCE OF ACID. IN I-V, R=RHAMNOGLUCOSYL.

HCl. When a 5-hydroxyl group is also present in the flavonoid, e.g. luteolin 7-O-rhamno-glucoside (III, R=rhamnoglucosyl), the 40 nm shift (observed for I) is additive to that recognized as characteristic of a free 5-hydroxyl group, thus resulting in an 80 nm bathochromic shift; the 80 nm shift is reduced to 40 nm on the addition of aqueous HCl. In each of these cases an acid labile complex is formed between the *ortho*-dihydroxyl system and the AlCl₃ (see II and IV), and with the luteolin derivative, the addition of acid still leaves the 5-hydroxy-4-keto AlCl₃ chelate (V) intact. In a similar manner, the 93 nm bathochromic shift observed in the long wavelength peak of 3',4',7-trihydroxyflavonol (VI, fisetin) on the addition of anhydrous AlCl₃, is reduced with acid to 63 nm, the shift expected for the 3-hydroxy-4-keto AlCl₃ chelate (VIII). All of the above observations can be accounted for by the reactions shown in Fig. 1.

A comprehensive spectral analysis of 175 flavonoids² has established the applicability of the AlCl₃, AlCl₃/HCl reagent for the detection of *ortho*-dihydroxyl groups in flavonoids. Table 1 presents the relevant results of the survey.

Table 1. The u.v. spectra of $AlCl_3$ complexes of flavonoids containing ortho-dihydroxyl groups*

Flavonoids with B-ring ortho-dihydroxyl groups	λ_{\max} (nm) for long-wavelength band		
	MeOH, AlCl ₃	MeOH, AlCl₃/aqμ. HCl	Δλ
Flavones			
3',4'-Dihydroxyflavone	375	340	35
3',4',7-Trihydroxyffavone	370	340	30
3',4',7-Trihydroxyflavone 7-O-rhamnoglucoside	378	340	38
Luteolin	424	388	36
Luteolin 7-O-glucoside	425	387	38
Luteolin 7-O-rutinoside	427	392	35
Orientin	424	388	36
Isoorientin	423	387	36
Lucenin-1	426	386	40
Flavonols			
3,3',4'-Trihydroxyflavone	465	425	40
Fisetin	455	424	31
Fisetin 3-O-glucoside	377	342	35
Ouercetin	454	424	30
Quercetin 7-O-rhamnoside	455	425	30
Ouercetin 3-O-galactoside	435	405	30
Ouercitrin	429	399	30
Rutin	431	400	31
Ouercetin 3.7-O-diglucoside	437	402	35
Ouercetin 3-O-glucoside 7-O-rhamnoside	435	400	35
Ouercetin 3-O-glucoside 7-O-rutinoside	438	403	35
Quercetin 3-methyl ether	437	404	33
Rhamnetin	449	422	27
Robinetin	445	425	20
Patuletin	453	424	29
Patuletin 3-O-glucoside	436	400sh	3€
Patuletin 3-O-rutinoside	431	399sh	32
Patulitrin	456	424	32
Gossypetin†	490	445	45
Gossypin	450	442	8
Gossypitrin	473	449	24
Myricetin	445	427	18
76			

Flavonoids with B-ring ortho-dihydroxyl groups	λ_{\max} (nm) for long-wavelength band		
	MeOH, AlCl ₃	MeOH, AlCl ₃ /aqμ. HCl	Δλ
Chalcones			
3,4-Dihydroxychalcone	410	363	47
2',3,4-Trihydroxychalcone	512	453	59
2',3,4,4'-Tetrahydroxychalcone	483	431	52
Aurones			
3',4'-Dihydroxyaurone	455	410	45
3',4',6,7-Tetrahydroxyaurone (Maritimetin)	457	407	50
Leptosidin	443	402	41
Flavonoids with A-ring ortho-dihydroxyl groups Flavones and flavonols Baicalein	373	347	26
Gossypetin†	490	445	45
0000jp+1111	,,,		
Isoflavones Texasin (6,7-dihydroxy-4'-methoxyisoflavone)	340	321	19
2002341. 01111	340 352	321 329sh	
Texasin (6,7-dihydroxy-4'-methoxyisoflavone) 6-Hydroxygenistein Flavanone	352	329sh	19 23
Texasin (6,7-dihydroxy-4'-methoxyisoflavone) 6-Hydroxygenistein			19
Texasin (6,7-dihydroxy-4'-methoxyisoflavone) 6-Hydroxygenistein Flavanone 5,6,7-Trihydroxyflavanone Aurones	352 326	329sh 315	19 23
Texasin (6,7-dihydroxy-4'-methoxyisoflavone) 6-Hydroxygenistein Flavanone	352	329sh	19 23

^{*} The flavonoids in each class are listed in order of increasing oxygenation.

EXPERIMENTAL

All spectra were measured on a Beckman DB-G spectrophotometer equipped with a Sargent model SLR recorder, using spectroscopic grade methanol as reference.

Preparation of Reagent Stock Solutions

Aluminium chloride (AlCl₃). Five g of fresh anhydrous reagent grade AlCl₃ were added cautiously to spectroscopic methanol (100 ml). The solution was stored in a glass container with a tightly fitting plastic stopper.

Hydrochloric acid (HCl), Conc. reagent grade HCl (50 ml) was mixed with water (100 ml) and stored in a glass-stoppered bottle.

Procedure for Spectra Determination

A solution of the flavonoid in methanol was prepared such that the optical density of the major absorption peak was in the region 0.6 to 0.8. The AlCl₃ spectrum was measured immediately after the addition of three drops of the AlCl₃ stock solution to about 2.5 ml of the above methanolic solution of the flavonoid. The AlCl₃/HCl spectrum was recorded immediately after the further addition of three drops of the HCl stock solution.

Acknowledgements—Support from the National Science Foundation (Grant GB-5548X), the National Institutes of Health (Grant GM-11111) and the Robert A. Welch Foundation (Grant F-130).

[†] These compounds contain both A- and B-ring *ortho*-dihydroxyl groups which produce an additive effect on the MeOH/AlCl₃ spectra.